Глубокое обучение. Готовые решения: Давид Осинга
Deep Learning Cookbook. Practical Recipes to Ger Started Quickly
Технология глубокого обучения не настолько сложна, как многие считают. До недавнего времени на ее изучение уходили годы, но с появлением таких фреймворков, как Keras и TensorFlow, инженеры-программисты, не имеющие опыта в данной области, могут быстро начать создавать рабочие приложения. Благодаря го
Полная аннотация
Автор
Издательство
Все характеристики
Аннотация
Технология глубокого обучения не настолько сложна, как многие считают. До недавнего времени на ее изучение уходили годы, но с появлением таких фреймворков, как Keras и TensorFlow, инженеры-программисты, не имеющие опыта в данной области, могут быстро начать создавать рабочие приложения. Благодаря готовым примерам, приведенным в книге, вы научитесь решать задачи, связанные с классификацией и генерированием текста, изображений и музыки.
В каждой главе описывается несколько решений, объединяемых в единый проект, например приложение, реализующее тренировку музыкальной рекомендательной системы. Также имеется глава с описанием методик, которые в случае необходимости помогут выполнить отладку нейронной сети. Все примеры написаны на языке Python и доступны в виде набора блокнотов.
Основные темы книги:
Использование векторных представлений слов для вычисления схожести текстов
Построение рекомендательной системы фильмов на основе ссылок в Википедии
Визуализация внутренних состояний нейронной сети
Создание модели, рекомендующей эмодзи для фрагментов текста
Повторное использование предварительно обученных сетей для создания службы обратного поиска изображений
Генерирование пиктограмм с помощью генеративно-состязательных сетей (GAN), автокодировщиков и рекуррентных сетей (RNN)
Распознавание музыкальных жанров и индексирование коллекций песен
Давид Осинга - опытный инженер-программист, ранее работавший в Google, основатель трех стартапов.
Ведет популярный сайт программных проектов, посвященный в том числе машинному обучению.
В каждой главе описывается несколько решений, объединяемых в единый проект, например приложение, реализующее тренировку музыкальной рекомендательной системы. Также имеется глава с описанием методик, которые в случае необходимости помогут выполнить отладку нейронной сети. Все примеры написаны на языке Python и доступны в виде набора блокнотов.
Основные темы книги:
Использование векторных представлений слов для вычисления схожести текстов
Построение рекомендательной системы фильмов на основе ссылок в Википедии
Визуализация внутренних состояний нейронной сети
Создание модели, рекомендующей эмодзи для фрагментов текста
Повторное использование предварительно обученных сетей для создания службы обратного поиска изображений
Генерирование пиктограмм с помощью генеративно-состязательных сетей (GAN), автокодировщиков и рекуррентных сетей (RNN)
Распознавание музыкальных жанров и индексирование коллекций песен
Давид Осинга - опытный инженер-программист, ранее работавший в Google, основатель трех стартапов.
Ведет популярный сайт программных проектов, посвященный в том числе машинному обучению.
Свернуть
Характеристики
ID товара
706032
ISBN
978-5-907144-50-7
Страниц
288 (Офсет)
Вес
458 г
Размеры
233x165x16 мм
Тип обложки
обл - мягкий переплет (крепление скрепкой или клеем)
Иллюстрации
Черно-белые
Все характеристики
Нет в продаже
Рецензии на книгу
Читали книгу? Как она вам?
+50 ₽ за рецензию
Вы можете стать одним из первых, кто напишет рецензию на эту книгу, и получить бонус — до 50 рублей на баланс в Лабиринте!
Книги из жанра

1 0132 026 -50% Еще 10 дней
Цифровизация процессов управления медико-гигиеническими рисками на производственных предприятиях
Шипилов Игорь Викторович