Распознавание образов и машинное обучение: Кристофер Бишоп

Pattern Recorgnition and Machine Learning

Рейтинг3.3(4 оценки)
2 рецензии

Аннотация

Книга представляет собой классический учебник по распознаванию образов и машинному обучению. Он содержит подробное описание наиболее важных методов машинного обучения, основанных на байесовском подходе.

Этот современный учебник, представляющий собой всеобъемлющее введение в распознавание образов и машинное обучение. Читателям достаточно знать основы многомерного математического анализа, линейной алгебры и теории вероятностей.

Книга подходит для преподавания курсов по машинному обучению, математической статистике, компьютерным наукам и распознаванию образов. Каждая глава сопровождается многочисленными задачами разного уровня сложности. Учебник предназначен для студентов старших курсов и аспирантов первого года обучения, а также исследователей и практиков, занимающихся распознавание образов и машинным обучением.

Бурное развитие практических приложений машинного обучения за последние десять лет сопровождается интенсивной разработкой важных алгоритмов и методов, лежащих в его основе. Например, байесовские методы перестали быть предметом изучения узких специалистов и стали основным трендом, а графы стали общепринятым инструментом для описания и применения вероятностных методов. Практическое значение байесовских методов все больше усиливается благодаря развитию многочисленных алгоритмов приближенного вывода, таких как вариационный байесовский подход и метод распространения ожидания.

Кроме того, все большее значение для алгоритмов и приложений приобретают новые ядерные модели.

Этот совершенно новый учебник отражает современные достижения распознавания образов и машинного обучения и представляет собой всеобъемлющее введение в эту область. Он предназначен для студентов старших курсов и аспирантов первого года обучения, а также исследователей и практиков. От читателей не требуется предварительных знаний в области распознавания образов и машинного обучения. Достаточно знать основы многомерного математического анализа и линейной алгебры. Опыт применения теории вероятностей желателен, но не обязателен, поскольку книга содержит самостоятельное введение в теорию вероятностей.

Книгу удобно использовать для преподавания курсов по машинному обучению, статистике, компьютерным наукам, интеллектуальному анализу данных и биоинформатике. Для удобства преподавания учебник содержит большой методический материал, включающий более чем 400 упражнений, ранжированных по сложности. Решения некоторых упражнений можно найти на веб-сайте, посвященном книге. Книга сопровождается публикацией большого объема дополнительного материала на веб-сайте, который содержит новейшую информацию.

Об авторе
Кристофер М. Бишоп — заместитель директора лаборатории Microsoft Research Cambridge и заведующий кафедрой компьютерных наук в Эдинбургском университете. Он работает преподавателем в колледже Дарвина Кембриджского университета и недавно был избран членом Королевской инженерной академии. Его предыдущий учебник Neural Networks for Pattern Recognition получил широкое признание.
Развернуть

Характеристики

ID товара
755682 
ISBN
978-5-907144-55-2 
Страниц
960 (Офсет)
Вес
1396 г
Размеры
242x173x45 мм
Тип обложки
7Бц - твердая, целлофанированная (или лакированная) 
Иллюстрации
Черно-белые 
Все характеристики
Нет в продаже
Рецензии на книгу
Читали книгу? Как она вам?
Мы всегда рады честным, конструктивным рецензиям.
Покупатели 2
avatarcheckmarkТовар куплен
Богдан Норенко
Рецензий 34
Оценок +119
Рейтинг +3
Необычная книга, в том смысле, что это другое направление машинного обучения и, с моей точки зрения, более правильное в плане соответствия принципам работы мозга человека и высших животных, хотя и без всяких там нейросетей. Думаю за этими вещами будущее, это даже отражается на развитии глубокого обучения, сейчас пик п...
Понравилась рецензия?
Да
avatarТовар куплен
Татьяна
Рецензий 3
Оценок +5
Рейтинг +1
Изображение отзыва
Книга отличная. Издательство не очень. Испортило выпуск книги ч/б иллюстрациями. На рисунках не понятно, что изображено. Пример на фото:где зелёные яблоки и оранжевые апельсины.
Понравилась рецензия?
Да

Книги из жанра

1 8203 640 -50% Еще 9 дней