Генетические алгоритмы на Python: Эйял Вирсански
Hands-On Genetic Algorithms with Python
Генетические алгоритмы - это семейство алгоритмов поиска, оптимизации и обучения, черпающее идеи из естественной эволюции. Благодаря имитации эволюционных процессов генетические алгоритмы способы преодолевать трудности, присущие традиционным алгоритмам поиска, и находить высококачественные решения в
Полная аннотация
Все характеристики
Аннотация
Генетические алгоритмы - это семейство алгоритмов поиска, оптимизации и обучения, черпающее идеи из естественной эволюции. Благодаря имитации эволюционных процессов генетические алгоритмы способы преодолевать трудности, присущие традиционным алгоритмам поиска, и находить высококачественные решения в самых разных задачах. Эта книга поможет освоить мощный, но в то же время простой подход к применению генетических алгоритмов, написанных на языке Python, и познакомиться с последними достижениями в области искусственного интеллекта.
После обзора генетических алгоритмов и описания принципов автор рассказывает об их отличиях от традиционных алгоритмов и о типах задач, к которым они применимы, как то: планирование, составление расписаний, игры и анализ функций. Вы также узнаете о том, как генетические алгоритмы позволяют повысить качество моделей машинного и глубокого обучения, решать задачи обучения с подкреплением и выполнять реконструкцию изображений. Наконец, будет упомянуто о некоторых родственных технологиях, открывающих новые возможности для будущих приложений.
Книга адресована программистам, специалистам по обработке данных и энтузиастам ИИ, желающим применить генетические алгоритмы в решении практических задач. Требуются владение языком Python на рабочем уровне и базовые знания математики и информатики.
После обзора генетических алгоритмов и описания принципов автор рассказывает об их отличиях от традиционных алгоритмов и о типах задач, к которым они применимы, как то: планирование, составление расписаний, игры и анализ функций. Вы также узнаете о том, как генетические алгоритмы позволяют повысить качество моделей машинного и глубокого обучения, решать задачи обучения с подкреплением и выполнять реконструкцию изображений. Наконец, будет упомянуто о некоторых родственных технологиях, открывающих новые возможности для будущих приложений.
Книга адресована программистам, специалистам по обработке данных и энтузиастам ИИ, желающим применить генетические алгоритмы в решении практических задач. Требуются владение языком Python на рабочем уровне и базовые знания математики и информатики.
Свернуть
Характеристики
Автор
Редактор
Переводчик
Издательство
ID товара
756485
ISBN
978-5-97060-857-9
Страниц
286 (Офсет)
Вес
588 г
Размеры
241x171x18 мм
Тип обложки
7Б - твердая (плотная бумага или картон)
Иллюстрации
Цветные
Все характеристики
Нет в продаже
Рецензии на книгу
Читали книгу? Как она вам?
+50 ₽ за рецензию
Вы можете стать одним из первых, кто напишет рецензию на эту книгу, и получить бонус — до 50 рублей на баланс в Лабиринте!
Книги из жанра

1 1892 378 -50% Еще 7 дней
Корпоративное озеро больших данных. Новый подход к использованию Big Data и Data Science в бизнесе
Горелик Алекс
8351 670 -50% Еще 7 дней
Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет
Сейновски Терренс Джей
2 3074 614 -50% Еще 7 дней
Анализ данных в науке и технике. Машинное обучение, динамические системы и управление
Брантон Стивен Л.